
Journal of Computational Physics 182, 149–190 (2002)
doi:10.1006/jcph.2002.7160

Adaptive Solution of Partial Differential
Equations in Multiwavelet Bases

B. Alpert,∗,1 G. Beylkin,†,2 D. Gines,† and L. Vozovoi‡,3,4,5

∗National Institute of Standards and Technology, Boulder, Colorado 80305-3328; †Department of Applied
Mathematics, University of Colorado, Boulder, Colorado 80309-0526; and ‡School

of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
E-mail: alpert@boulder.nist.gov, beykin@boulder.colorado.edu, david.gines@agilent.com, and vozovoi@bfr.co.il

Received January 17, 2002; revised June 10, 2002

We construct multiresolution representations of derivative and exponential opera-
tors with linear boundary conditions in multiwavelet bases and use them to develop
a simple, adaptive scheme for the solution of nonlinear, time-dependent partial dif-
ferential equations. The emphasis on hierarchical representations of functions on
intervals helps to address issues of both high-order approximation and efficient ap-
plication of integral operators, and the lack of regularity of multiwavelets does not
preclude their use in representing differential operators. Comparisons with finite dif-
ference, finite element, and spectral element methods are presented, as are numerical
examples with the heat equation and Burgers’ equation. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper we construct representations of operators in bases of multiwavelets, with
the goal of developing adaptive solvers for both linear and nonlinear partial differential
equations, and we demonstrate success with a simple solver. We use multiwavelet bases
constructed in [2] following [3, 5]. These bases were also considered in [15], although not
for numerical purposes. Multiwavelet bases retain some properties of wavelet bases, such as
vanishing moments, orthogonality, and compact support. The basis functions do not overlap
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on a given scale and are organized in small groups of several functions (thus, multiwavelets)
sharing the same support. On the other hand, the basis functions are discontinuous, similar
to the Haar basis and in contrast to wavelets with regularity. As was shown in [3] (dis-
crete version of multiwavelets) and [2], multiwavelet bases can be successfully used for
representing integral operators. A wide class of integrodifferential operators has effectively
sparse representations in these bases, due to vanishing moments of the basis functions. An
effectively sparse matrix representation is one that differs from a sparse matrix by a matrix
with a small norm.

However, this early success with integral operators did not immediately lead to the suc-
cessful solution of partial differential equations. The requirements for solving partial dif-
ferential equations, especially adaptively, differ somewhat from those for integral equations
and extend beyond the property of vanishing moments.

In this paper we demonstrate that the multiwavelet bases are well suited for high-order
adaptive solvers of partial differential equations, and we argue that they present a better
choice than other wavelet bases. The representation of differential operators in these bases
may be viewed as a multiresolution generalization of finite difference schemes, discontin-
uous finite element schemes, introduced in [11] (see also [10] and references therein), and
finite spectral elements (see, for example, [20, 21]). We expand on these points later in the
paper.

There are two main reasons for using wavelet bases as a tool for computing solutions
of partial differential equations (PDEs). First, the fact that advection–diffusion equations
(for example, the Navier–Stokes equations) are often, subtly, integrodifferential equations
gives rise to difficulties in setting up numerical schemes, since requirements for the de-
scretization of integral and differential operators appear contradictory. In particular, the
usual discretizations of an integral operator lead to dense (full) matrices. Since integral
operators in advection–diffusion equations (for example, the Riesz transforms) are sparse
in both wavelet and multiwavelet bases, the usual difficulties associated with their repre-
sentation do not occur. Second, one of the remarkable properties of wavelet bases is that
they provide a system of coordinates in which (for a wide class of operators) numerical
calculus of operators becomes practical [5]. In particular, we can compute exponentials
of self-adjoint, strictly elliptic operators. Such exponential operators are effectively sparse
for all 0 ≤ t < ∞ and, in fact, become more and more sparse (for a fixed but arbitrary ac-
curacy) as t increases. This observation has led to the exact linear part schemes for time
discretization in [7] and [8]. Using exponential operators to set up the time evolution, we
dramatically improve the properties of the time-stepping schemes. Exponentials of oper-
ators for t > 0 eliminates the need to represent second-order derivative operators in, for
example, the Navier–Stokes equations, since the integrals representing coefficients of the
exponential operator are absolutely convergent.

Representations of the derivative operator constructed in bases of compactly supported
Daubechies’ wavelets [13] may be interpreted on the finest scale as finite difference schemes
(for the coefficients of expansion) [4]. These schemes correspond to central differences
and are of order 2M in bases with M vanishing moments. Representations of differential
operators are unique, since the basis functions are smooth enough to make the integrals
(defining the coefficients of the representation) absolutely convergent. The uniqueness
holds for all smooth wavelets. Therefore, there is no natural equivalent of forward and
backward differences if we interpret these representations as finite differences on the finest
scale.
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An extension of such representations using bases on an interval [12] may also be in-
terpreted as a finite difference scheme on the finest scale with a ”corrected” stencil near
the boundary. The problem of accommodating boundary conditions in such cases is very
similar to that for the usual finite difference scheme, in that there is a loss of quality of ap-
proximation near the boundary. This is due either to the loss of the order of approximation
or to the high sensitivity to a change in the boundary values (large condition number of
corresponding operators).

On the other hand, since multiwavelets are discontinuous, the integrals defining the co-
efficients of the derivative operator are only conditionally convergent and representations
of differential operators in multiwavelet bases exist only in the weak sense. We construct a
family of weak representations, that is, representations which are accurate up to an appropri-
ate order for a class of smooth test functions, e.g., C∞ ([0, 1]). This family contains analogs
of forward and backward differences, which are very convenient for a number of reasons.
In particular, it is easy to accommodate boundary conditions without losing the order of
approximation. Such weak representations appear to be perfectly adequate for computation
and, in fact, have a number of useful properties. We show that by representing differential
operators in multiwavelet bases with M vanishing moments, we maintain convergence of
order M − 1 up to the boundary.

Another property of the multiwavelet bases that makes them a good candidate for solving
PDEs is the interpolating property of scaling functions. If the scaling function of a wavelet
basis is interpolating, then the coefficients are also values of the function. This is very useful
for the adaptive computation of nonlinear functions of the solution. There are no smooth,
compactly supported, orthonormal wavelets with this property (although approximations
exist [7]). In this paper we introduce a modification of the bases of [2] such that the transition
between coefficients and values is achieved by a diagonal matrix (rescaling).

Computing a pointwise product of functions, as is done in [7], reveals that the efficiency
of the algorithm depends on the oversampling factor (or the number of finer scales into
which the pointwise product spills). For piecewise polynomial wavelets, including spline
wavelets, the oversampling (or refinement, introducing additional scales) is moderate. With
a proper choice of the number of vanishing moments for a desired accuracy and thresholding
to determine the coefficients to retain, refinement of only one scale is sufficient.

Finally, if we restrict the representation to scaling functions on the finest scale, our method
is very similar to that of finite differences, finite elements, or spectral elements, depending
on your preferred interpretation. Using the multiresolution representation (multiwavelets)
allows us to retain access to the properties outlined above and, at the same time, use the
advantages of wavelets. (Instead of wavelets we can use scaling functions from different
scales; we do not distinguish between these approaches at this point.)

The paper is organized as follows. In Section 2, we elaborate on the motivation for se-
lecting multiwavelet bases as a tool for solving PDEs by considering, as a concrete applica-
tion, the Navier–Stokes equations in the semigroup formulation. We introduce multiwavelet
bases in Section 3, where we also consider a variant of multiwavelet bases with interpolating
scaling functions. In the same section, we consider the corresponding two-scale difference
equations and algorithms for multiwavelet decomposition and reconstruction. We then dis-
cuss in detail in Section 4 weak representations of the derivative operator in multiwavelet
bases. We show that such multiwavelet derivatives can be viewed as analogs of various
finite difference operators (forward, backward, and central differences, for example) but
that they allow us to maintain high order in the presence of boundary conditions. We then
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consider the construction of the exponential operators in Section 5 in order to set up our
numerical scheme for PDEs. Finally, in Section 6 we illustrate our approach by considering
an adaptive solver for Burgers’ equation.

2. CONSIDERATIONS FOR ADVECTION–DIFFUSION EQUATIONS

We restrict our attention to a class of advection–diffusion equations of the form

ut = Lu + N (u), x ∈ � ⊂ Rd , (2.1)

where u = u(x, t) ∈ Rn, x ∈ Rd , d ∈ {1, 2, 3}, and t ∈ [0, T ], with the initial condition

u(x, 0) = u0(x), x ∈ �, (2.2)

and the linear boundary condition

Bu(x, t) = 0, x ∈ ∂�, t ∈ [0, T ]. (2.3)

In (2.1) L represents the linear and N (·) the nonlinear terms of the equation.
As a specific example, we consider the incompressible Navier–Stokes equations and

write them in the form (2.1). We start with the usual form of the Navier–Stokes equations
for x ∈ � ⊂ Rd , d = 2, 3,

ut = ��u − (u · ∇)u − ∇ p, (2.4)

∇ · u = 0, (2.5)

where p denotes the pressure, with initial condition

u(x, 0) = u0, (2.6)

and “no slip” boundary condition

u(x, t) = 0, x ∈ ∂�, t ∈ [0, T ]. (2.7)

Equation (2.4) implicitly provides an equation for p through the zero-divergence constraint
(2.5). Let us introduce the projector P onto spaces of divergence-free functions, which is a
convolution with the kernel

Ki j (x) = �i j�(x) − Cd

[
�i j

|x |d − dxi x j

|x |d+2

]
, (2.8)

where i, j = 1, . . . , d and Cd equals 1/2� in two dimensions, or 1/4� in three dimensions.
Using the projector P, we obtain

ut = ��u − P((u · ∇)u) (2.9)

in place of (2.4) and (2.5). Equation (2.9) is now in the form (2.1), where L = �� and
N (u) = −P((u · ∇)u). The transformation from (2.4) and (2.5) to (2.9) (aimed at removing
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the pressure term from (2.4)) is well known and appears in a variety of forms in the literature.
The integral operator (2.8) can be obtained using the Riesz transform following a derivation
presented, for example, in [22].

Equation (2.9) shows that the Navier–Stokes equations are integrodifferential equations.
Yet, using the singular integral operator (2.8) for numerical purposes has largely been
avoided because of a difficulty in obtaining an accurate procedure for its application via
standard methods. However, in a wavelet basis with a sufficient number of vanishing mo-
ments (for a given accuracy), the projector P is nearly local on wavelets and, thus, has
a sparse representation. This approximate locality follows directly from the vanishing-
moments property. Precise statements about such operators and examples can be found in
[6] (see also [4, 5]).

This observation provides us with a reason to require that the vanishing-moment property
be satisfied for the basis functions. This is exactly the same consideration that one needs to
use in the theory of the vortex method [9], except that we consider no further approximations
of the Navier–Stokes equations.

A second reason for using wavelet bases is found if we consider numerical methods for
time evolution of (2.1). Using the semigroup approach (see for example, [17, 19, 22]) we
rewrite the PDE (2.1) as a nonlinear integral equation in time,

u(x, t) = e(t−t0)Lu0(x) +
∫ t

t0

e(t−� )LN (u(x, � )) d�, (2.10)

and consider a class of exact linear part (ELP) time-evolution schemes [7, 8]. A distinctive
feature of these schemes is the exact evaluation of the contribution of the linear part. When
the nonlinear part is zero, the scheme reduces to the evaluation of the exponential function
of the operator (or matrix) L representing the linear part.

The stability of traditional time-discretization schemes for advection–diffusion equations
is controlled by the linear term, and these equations typically require an implicit marching
scheme to avoid an impractically small time step. As is show in [8], with an explicit ELP
scheme it is possible to achieve the stability usually associated with implicit predictor–
corrector schemes. Even if an implicit ELP scheme is used, as in [7], an approximation
is used only for the nonlinear term. This changes the behavior of the corrector step of
implicit schemes. The corrector step iterations of the usual implicit schemes for advection–
diffusion equations involve either both linear and nonlinear terms or only the linear term [18].
Due to the high condition number of the matrix representing the linear (diffusion) term,
convergence of fixed-point iteration requires a very small time step, making fixed-point
iteration impractical. Implicit ELP schemes do not involve the linear term and fixed-point
iteration is sufficient [7].

Unfortunately, computing and applying the exponential or other functions of operators in
the usual manner equires evaluating dense matrices and is highly inefficient. An exception
is the case where a fast algorithm is available for the diagonalization of the matrix L;
for example, L is a circulant matrix which is diagonalized by the Fourier transform (FT).
This approach is not available in the case of variable coefficients and general boundary
conditions.

On the other hand, computing exponentials of strictly elliptic operators with variable
coefficients in the wavelet system of coordinates results in sparse matrices, and using
exponentials of operators for numerical purposes is an efficient option [7]. For problems in
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two and three dimensions, additional issues of efficiency (which we will consider separately)
have to be addressed to make such schemes practical. Numerical schemes of ELP type,
however, provide significant advantages and are available only if the resulting matrices are
sparse in the system of coordinates chosen for computations. Again the basic reason for
sparsity (for a given but arbitrary precision) is the vanishing-moment property.

The next step in our assessment of the requirements for the basis is to consider the
boundary conditions. In (2.1) and (2.10) we incorporate the boundary conditions into the
operatorL. For example, u =L−1v means that u solvesLu = v with the boundary conditions
Bu = 0. Similarly, u(x, t) = eLt u0(x) means that u solves ut =Lu, u(x, 0) = u0(x), and
Bu(x, t) = 0.

Thus, we need to find bases where it is easy to impose the boundary conditions and, most
important, the order of the approximation remains the same (or almost the same) as that for
the PDE itself. Historically, this problem has proved to be difficult. For example, with the
finite difference methods, it is relatively easy to impose boundary conditions within low-
order schemes. As the order of approximation increases, so do the condition numbers of the
corresponding boundary operators; as a result, high-order schemes are problematic within
finite difference methods. It appears necessary to approach the boundary with unequally
spaced nodes to avoid the Runge phenomenon. We will continue these considerations further
in the paper.

Next, nonlinear PDEs (as well as some linear PDEs) require computation of the pointwise
product of functions or, more generally, functions of the solution. We argue that it is con-
venient to have wavelet bases where the scaling functions have the interpolating property
(see discussion in [7]). This is similar to the approach of the pseudospectral methods where
an approximation to a solution is constructed in such a way that at the collocation points,
we can operate on function values rather than on coefficients of expansions.

The interpolating property of scaling functions, the requirement that �(k) = �k,0, where
k is an integer, goes one step further and implies that values and coefficient are the same.
Specifically, if we have an expansion

u(x) =
∑

k

uk �(x − k), (2.11)

then uk = u(k). This property is useful in the construction of adaptive algorithms for point-
wise multiplication [7]. For the bases we develop in this paper, the transition operator
between coefficients and values is diagonal.

Finally, we use orthonormal bases rather than biorthogonal bases or basis-free construc-
tions (as in finite difference schemes). In our view, effort put into the construction of the
basis (the coordinate system in which the solutions are represented) simplifies both the
analysis and the numerical algorithms.

3. MULTIWAVELET BASES

3.1. Mathematical Preliminaries

In this section we summarize some properties of the multiwavelet bases developed in [2]
and introduce our notation.
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3.1.1. Multiresolution analysis. For k = 1, 2, . . . , and n = 0, 1, 2, . . . , we define Vk
n

as a space of piecewise polynomial functions,

Vk
n = { f : the restriction of f to the interval (2−nl, 2−n(l + 1)) is a polynomial

of degree less than k, for l = 0, . . . , 2n − 1, and f vanishes elsewhere}. (3.1)

The space Vk
n has dimension 2nk and

Vk
0 ⊂ Vk

1 ⊂ · · · ⊂ Vk
n ⊂ · · · . (3.2)

We define the multiwavelet subspace Wk
n, n = 0, 1, 2, . . . , as the orthogonal complement

of Vk
n in Vk

n+1,

Vk
n ⊕ Wk

n = Vk
n+1, Wk

n ⊥ Vk
n, (3.3)

and note that Wk
n is of dimension 2nk. Therefore, we have

Vk
n = Vk

0 ⊕ Wk
0 ⊕ Wk

1 ⊕ · · · ⊕ Wk
n−1. (3.4)

We define Vk = ⋃∞
n=0 Vk

n and observe that Vk is dense in L2([0, 1]) with respect to the norm
‖ f ‖ = 〈 f, f 〉1/2, where

〈 f, g〉 =
∫ 1

0
f (x)g(x) dx . (3.5)

Given a basis �0, . . . ,�k−1 of Vk
0, the space Vk

n is spanned by 2nk functions which are
obtained from �0, . . . ,�k−1 by dilation and translation,

�n
jl(x) = 2n/2� j (2

n x − l), j = 0, . . . , k − 1, l = 0, . . . , 2n − 1. (3.6)

3.1.2. Nonstandard form. As was shown in [5], given a multiresolution analysis as in
(3.2), and orthogonal projection operators Pk

n : L2([0, 1]) → Vk
n and Qk

n : L2([0, 1]) → Wk
n

with Qk
n = Pk

n+1 − Pk
n , an operator T can be represented as

T = Tk
0 +

∞∑
n=0

(
Ak

n + Bk
n + Ck

n

)
. (3.7)

where

Ak
n = Qk

n T Qk
n, Bk

n = Qk
n T Pk

n, Ck
n = Pk

n T Qk
n, Tk

n = Pk
n T Pk

n. (3.8)

The nonstandard form is the representation of T in (3.7) as a collection of triplets,

T = {
Tk

0,
(
Ak

n, Bk
n, Ck

n

)
n=0,1...

}
. (3.9)

We will construct nonstandard forms of the derivative operator and of exponential operators
in multiwavelet bases.
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3.1.3. Multiwavelets. We introduce piecewise polynomial functions �0, . . . , �k−1 to
be an orthonormal basis for Wk

0,

∫ 1

0
� i (x)� j (x) dx = �i j . (3.10)

Since Wk
0 ⊥ Vk

0, the first k moments of �0, . . . , �k−1 vanish:

∫ 1

0
� j (x)xi dx = 0, i, j = 0, 1, . . . , k − 1. (3.11)

The space Wk
n is spanned by 2nk functions obtained from �0, . . . , �k−1 by dilation and

translation,

� n
jl(x) = 2n/2� j (2

n x − l), j = 0, . . . , k − 1, l = 0, . . . , 2n − 1, (3.12)

and supp (� n
jl) = Inl , where Inl denotes the interval [2−nl, 2−n(l + 1)]. The condition of

orthonormality of �0, . . . , �k−1 yields

∫ 1

0
� n

il(x)� n′
jm(x) dx = �i j�lm�nn′ . (3.13)

The set {�0, . . . ,�k−1} ∪ {� n
jl : j = 0, . . . , k − 1, l = 0, . . . , 2n − 1, n = 0, 1, . . .} therefore

forms a complete orthonormal basis for L2([0, 1]).
We note that in constructing multiwavelets there are two natural choices in selecting the

basis. One choice provides additional vanishing moments for some of the basis functions
[2], whereas the other organizes the basis by the type of singularity at the boundary between
the subintervals.

3.1.4. Interpolating basis. In the original construction [2], the scaling functions�0, . . . ,

�k−1 were chosen to be � j (x) = √
j + 1/2Pj (x), j = 0, . . . , k − 1, where Pj are the

Legendre polynomials. These functions form an orthonormal basis for the space of poly-
nomials of degree less than k on the interval [−1, 1]. We introduce an alternative basis for
this space, using interpolating polynomials.

Given nodes x0, . . . , xk−1, the Lagrange interpolating polynomials are defined as

l j (x) =
k−1∏
i=0,
i �= j

(
x − xi

x j − xi

)
, j = 0, . . . , k − 1, (3.14)

and are characterized by l j (xi ) =�i j .

PROPOSITION 3.1. Given nodes x0, . . . , xk−1, which are the roots of Pk(x), and the
associated Gauss–Legendre quadrature weights w0, . . . , wk−1, the functions

R j (x) = 1√
w j

l j (x), j = 0, . . . , k − 1, (3.15)
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TABLE I

Interpolating Basis Functions

k = 1
R1(x) = 1/

√
2

k = 2
R1(x) = (1 − √

3x)/2
R2(x) = (1 + √

3x)/2

k = 3
R1(x) = (−√

3x + √
5x2)/2

R2(x) = (−3 + 5x2)/(2
√

2)
R3(x) = (

√
3x + √

5x2)/2

have the following properties:

1. The functions R0, . . . , Rk−1 form an orthonormal basis on [−1, 1] with respect to the
inner product 〈 f, g〉[−1,1] = ∫ 1

−1 f (x)g(x) dx.
2. For j = 0, . . . , k − 1, R j is a linear combination of Legendre polynomials given by

R j (x) = √
w j

∑k−1
i=0 (i + 1

2 )Pi (x j )Pi (x).
3. Any polynomial f of degree less than k can be represented by the expansion f (x) =∑k−1
j=0 d j R j (x), where the coefficients are given by d j = √

w j f (x j ), j = 0, . . . , k − 1.

The proof of Proposition 3.1 is straightforward and we omit it here. Examples of inter-
polating basis functions for k = 1, 2, and 3 are given in Table I.

Remark 3.1. Property 3 in Proposition 3.1 demonstrates that the transformation be-
tween function values and basis coefficients is achieved by a diagonal matrix. This property
is the main reason for considering interpolating bases.

3.1.5. Choice of scaling functions. We can use either the Legendre polynomials P0, . . . ,

Pk−1 or the interpolating polynomials R0, . . . , Rk−1, both on (−1, 1), to construct an or-
thonormal basis for Vk

0. For j = 0, . . . , k − 1, we define the Legendre scaling functions

� j (x) =
{√

2 j + 1Pj (2x − 1), x ∈ (0, 1),

0, x /∈ (0, 1),
(3.16)

and the interpolating scaling functions

� j (x) = √
w j

k−1∑
i=0

�i (x j )�i (x), (3.17)

where now x0, . . . , xk−1 denote the roots of Pk(2x − 1) and w0, . . . , wk−1 the quadrature
weights w j = 1/(k P ′

k(2x j − 1)Pk−1(2x j − 1)). We will consider both choices of the scaling
functions.

3.2. Two-Scale Difference Equation

In order to compute projections of functions on subspaces of multiresolution analysis in
(3.2), we consider the two-scale difference equations (see, for example, [14]). While the
following derivation uses the Legendre scaling functions� j (x), equivalent expressions hold
for the interpolating scaling functions � j (x) as well.
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For Daubechies’ wavelets, the filter coefficients are used to construct the scaling function
� and the wavelet � , whereas, in our case, functions � and � are known, and we use them
to construct the filter coefficients.

The relations (3.2) and (3.3) between the subspaces may be expressed by the two-scale
difference equations,

�i (x) =
√

2
k−1∑
j=0

(
h(0)

i j � j (2x) − h(1)
i j � j (2x − 1)

)
, i = 0, . . . , k − 1, (3.18a)

� i (x) =
√

2
k−1∑
j=0

(
g(0)

i j � j (2x) + g(1)
i j � j (2x − 1)

)
, i = 0, . . . , k − 1, (3.18b)

where the coefficients g(0)
i j , g(1)

i j depend on the choice of the order k. The functions
√

2�0

(2x), . . . ,
√

2�k−1(2x) in (3.18) are orthonormal on the interval [0, 1
2 ] whereas

√
2�0

(2x − 1), . . . ,
√

2�k−1(2x − 1) are orthonormal on the interval [ 1
2 , 1]. The matrices of co-

efficients

H (0) = {
h(0)

i j

}
, H (1) = {

h(1)
i j

}
, G(0) = {

g(0)
i j

}
, G(1) = {

g(1)
i j

}
(3.19)

are analogs of the quadrature mirror filters (see, for example, [14]). The two-scale
equations (3.18) lead us to a multiresolution decomposition. We now derive the necessary
relations for multiresolution reconstruction.

By construction, we have 〈�i ,� j 〉 = �i j , 〈� i , � j 〉 = �i j , and 〈�i , � j 〉 = 0 for i, j =
0, . . . , k − 1, where 〈 , 〉 is the inner product (3.5). Using this orthogonality conditions
and (3.18), we obtain

H (0) H (0)T + H (1) H (1)T = I, (3.20a)

G(0)G(0)T + G(1)G(1)T = I, (3.20b)

H (0)G(0)T + H (1)G(1)T = 0. (3.20c)

Introducing

U =
(

H (0) H (1)

G(0) G(1)

)
, (3.21)

we note that UU T = I . Therefore, U is an orthogonal matrix and satisfies U T U = I . This
condition gives rise to an additional set of relations for matrices H (0), H (1), G(0), and G(1):

H (0)T H (0) + G(0)T G(0) = I, (3.22a)

H (1)T H (1) + G(1)T G(1) = I, (3.22b)

H (0)T H (1) + G(0)T G(1) = 0. (3.22c)

Using these relations, we obtain

�i (2x) = 1√
2

k−1∑
j=0

(
h(0)

j i � j (x) + g(0)
j i � j (x)

)
, (3.23a)



ADAPTIVE SOLUTION IN MULTIWAVELET BASES 159

�i (2x − 1) = 1√
2

k−1∑
j=0

(
h(1)

j i � j (x) + g(1)
j i � j (x)

)
. (3.23b)

Relations (3.18) and (3.23) yield algorithms for transition between different scales of the
multiresolution analysis, which we briefly describe in Section 3.3.

3.2.1. QMF coefficients. We explicitly compute the quadrature mirror filter (QMF) co-
efficients as matrices H (0), H (1), G(0), and G(1). We compute the matrix H (1) by multiplying
both sides of the two-scale difference equation (3.18a) by

√
2� j (2x). Due to orthogonality,

we obtain

h(0)
(i j) =

√
2
∫ 1/2

0
�i (x)� j (2x) dx . (3.24)

Applying Gauss–Legendre quadrature, we get

h(0)
i j = 1√

2

k−1∑
m=0

wm �i

(
xm

2

)
� j (xm). (3.25a)

We proceed in the same manner to obtain from (3.18) the equations

h(1)
i j = 1√

2

k−1∑
m=0

wm �i

(
xm + 1

2

)
� j (xm), (3.25b)

g(0)
i j = 1√

2

k−1∑
m=0

wm� i

(
xm

2

)
� j (xm), (3.25c)

g(1)
i j = 1√

2

k−1∑
m=0

wm� i

(
xm + 1

2

)
� j (xm). (3.25d)

From the symmetry of the Legendre scaling functions � j (x) and wavelets � j (x), we have

� j

(
1

2
− x

)
= (−1) j� j

(
1

2
+ x

)
, (3.26a)

� j

(
1

2
− x

)
= (−1) j+k� j

(
1

2
+ x

)
, (3.26b)

and, using (3.23), (3.26), and (3.18), we note that

h(1)
i j = (−1)i+ j h(0)

i j , (3.27a)

g(1)
i j = (−1)i+ j+k g(0)

i j . (3.27b)

Therefore, we compute the coefficients h(0)
i j and g(0)

i j from (3.25) and the coefficients h(1)
i j , g(1)

i j

from (3.27). The results for H (0) are summarized in Table II for k = 1, 2, and 3. For i < j ,
we obtain h(0)

i j = 0, and for each k ≤ 3, the associated matrix H (0) occupies the upper-left
k × k block in Table II. The results for G(0) are shown in Table III for k = 1, 2, and 3.
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TABLE II

Coefficient Matrices H(0) for Legendre

Scaling Functions for k = 1, 2, and 3 Are

Principal Submatrices of the Matrix Below


1√
2

0 0

−
√

3

2
√

2

1

2
√

2
0

0 −
√

3
√

5

4
√

2

1

4
√

2




3.2.2. Interpolating scaling functions. We now compute the QMF matrices for the
interpolating polynomial basis. Due to the interpolating properties of the basis functions,
Eqs. (3.25) may be written as

h(0)
i j = w j√

2
�i

(
x j

2

)
, (3.28a)

h(1)
i j = w j√

2
�i

(
x j + 1

2

)
, (3.28b)

g(0)
i j = w j√

2
� i

(
x j

2

)
, (3.28c)

g(1)
i j = w j√

2
� i

(
x j + 1

2

)
. (3.28d)

From the symmetry of the functions � j (x) and � j (x), we observe that

h(1)
i j = h(0)

k−i−1,k− j−1, (3.29a)

g(1)
i j = (−1)i+k g(0)

i,k− j−1. (3.29b)

The results for H (0) are summarized in Table IV for k = 1, 2, and 3. The results for G(0) are
shown in Table V for k = 1, 2, and 3.

3.3. Algorithms for Multiwavelet Decomposition and Reconstruction

The matrix coefficients h(0)
i j , h(1)

i j , g(0)
i j , and g(0)

i j allow us to change representation between
subspaces Vk

n−1, Wk
n−1, and Vk

n , where Vk
n = Vk

n−1 ⊕ Wk
n−1, n = 1, 2, . . . . In the subspace

TABLE III

Coefficient Matrices G(0) for k = 1, 2, and 3

[−1√
2

]
1√
2

[
0 −1

1

2

√
3

2

]



1

3
√

2

1√
6

− 5

3
√

2

0
1

4
√

2

√
15

4
√

2

−
√

5

6
√

2
−

√
5

2
√

6
−

√
2

3
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TABLE IV

Coefficient Matrices H(0) for Interpolating Scaling

Functions for k =1, 2, and 3

[
1√
2

]
1

4
√

2

[
3 + √

3 1 + √
3

1 − √
3 3 − √

3

]

1

72
√

2


 42 + 12

√
15 12

√
6 + 6

√
10 6

−15
√

6 + 6
√

10 42 15
√

6 + 6
√

10

6 −12
√

6 + 6
√

10 42 − 12
√

15




Vk
n , the function f (x) is represented by the Legendre expansion

f (x) =
2n−1∑
l=0

k−1∑
j=0

sn
jl�

n
jl(x), (3.30)

where the coefficients sn
jl are computed as

sn
jl =

∫ 2−n (l+1)

2−nl
f (x)�n

jl(x) dx . (3.31)

The decomposition of f (x) into the multiwavelet basis is given by

f (x) =
k−1∑
j=0

(
s0

j,0� j (x) +
n−1∑
m=0

2m−1∑
l=0

dm
jl �

m
jl (x)

)
, (3.32)

with the expansion coefficients

dm
jl =

∫ 2−m (l+1)

2−ml
f (x)� m

jl (x) dx . (3.33)

This is a collection of 2nk functions from levels m = 0, 1, . . . , n − 1. On the coarsest level,
m = 0, there are 2k functions, � j (x), � j (x), j = 0, . . . , k − 1, supported on the whole
interval [0, 1]. On the mth level, m ≥ 1, there are 2mk functions, with k functions � m

jl (x),
j = 0, . . . , k − 1, supported on the interval [2−ml, 2−m(l + 1)], for l = 0, . . . , 2m − 1.

The decomposition algorithm consists of two parts. First, the function f (x) is projected
on the finest scale, as in (3.30) and (3.31), and then the wavelet coefficients in (3.32) and
(3.33) are computed using the QMF coefficients.

TABLE V

Coefficient Matrices G(0) for k = 1, 2, and 3

[−1√
2

]
1

4

[
2 −2

1 − √
3 1 + √

3

]

1

72


−12

√
3 − 4

√
5 28

√
2 12

√
3 − 4

√
5

−9 + 6
√

15 −15
√

6 9 + 6
√

15

−26 + 6
√

15 4
√

10 −26 − 6
√

15
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The relations between the coefficients on two consecutive levels m and m + 1 are
(decomposition step)

sm
il =

k−1∑
j=0

(
h(0)

i j sm+1
j,2l + h(1)

i j sm+1
j,2l+1

)
, (3.34a)

dm
il =

k−1∑
j=0

(
g(0)

i j sm+1
j,2l + g(1)

i j sm+1
j,2l+1

)
. (3.34b)

These relations follow from (3.18), (3.31), and (3.33). Thus, starting with 2nk values sn
il , we

apply repeatedly the decomposition procedure (3.34) to compute the coefficients on coarser
levels, m = n − 1, n − 2, . . . , 0.

For multiwavelet reconstruction, we compute the coefficients sn
jl from the multiwavelet

coefficients s0
j0, dm

jl , m = 0, . . . , n using recursively the following relations (reconstruction
step),

sm+1
i,2l =

k−1∑
j=0

(
h(0)

j i sm
jl + g(0)

j i dm
jl

)
, (3.35a)

sm+1
i,2l+1 =

k−1∑
j=0

(
h(1)

j i sm
jl + g(1)

j i dm
jl

)
. (3.35b)

The later relations follow from (3.23), (3.31), and (3.33).

3.3.1. Projection on the finest scale. The representation in (3.30) is obtained by dividing
the interval [0, 1] into 2n equal subintervals. In order to achieve a good approximation, the
discretization is chosen such that f (x) is well approximated by polynomials of degree k − 1
on each subinterval. We note that, with minor modification of the following procedure, the
subintervals can be chosen to be dyadic intervals of various lengths (we note it as one of
the advantages of using multiwavelet bases).

The coefficients in (3.31) may be computed using Gauss–Legendre quadrature. Using
(3.6) with Legendre polynomials, we obtain

sn
jl = 2−n/2

k−1∑
i=0

f (2−n(xi + l))� j (xi )wi , (3.36)

where x0, . . . , xk−1 are the roots of Pk(2x − 1), and w0, . . . , wk−1 are the corresponding
quadrature weights. For the interpolating basis, (3.36) simplifies to

sn
jl = 2−n/2√w j f (2−n(x j + l)). (3.37)

3.3.2. Truncation of coefficients. We explicitly describe the error introduced by the
truncation of wavelet coefficients. Let us assume that a function f on [0, 1] is approxi-
mated by its projection on some scale n + 1, so that ‖ f − f n+1‖2 ≤ 	‖ f ‖2, where 	 is the
desired accuracy of the approximation. This condition might be met, for example, if f is
oversampled on scale n + 1. We now seek to approximate f on the next coarsest scale,
n, and consider the resulting error introduced by the coarsening. We divide [0, 1] into 2n
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subintervals and examine the error on each subinterval. Due to orthonormality, the error on
some subinterval l is ‖ f n+1 − f n

l ‖2 = ‖dn
l ‖2. It is easy to verify that in order to maintain

the global condition

‖ f n+1 − f n‖2 ≤ 	‖ f n+1‖2, (3.38)

we may truncate the (n + 1)-scale representation when

∥∥dn
l

∥∥
2 ≤ 2−n/2‖ f n+1‖2	. (3.39)

Using (3.39) as a truncation threshold, we set to zero all difference coefficients which
satisfy that constraint. In so doing, we may adaptively reduce the number of coefficients in
the representation, while maintaining the specified accuracy 	.

3.3.3. Pointwise multiplication of functions. We now briefly describe the procedure
which we use for the multiplication of functions represented on an interval. Given functions
f and g, each represented on some union of dyadic subintervals by k-term interpolating
polynomial expansions, we obtain the product f · g in four steps. First, the representations
for f and g are refined by dividing their subintervals, as necessary, so that the subintervals
for two functions coincide. Second, each subinterval is further divided into two, to allow
sufficient resolution to represent the product. The coefficients in the representations of f and
g are transformed in these two steps into coefficients for the refined subintervals. Third, the
product of representations f (x) = ∑k−1

j=0 a j �
n
jl(x) and g(x) = ∑k−1

j=0 b j �
n
jl(x) on a single

subinterval (on scale n) is computed as f (x)g(x) = ∑k−1
j=0 c j �

n
jl(x), where

c j = (
2n/2

) a j b j√
w j

, (3.40)

where w j are the Gaussian quadrature weights. Fourth, for each pair of subintervals obtained
in the second step, the k “average” coefficients and k “difference” coefficients are computed
and the intervals are merged if the differences are below the accuracy threshold.

4. REPRESENTATION OF d
dx IN MULTIWAVELET BASES

Since the multiwavelet basis functions are discontinuous, representations of derivative
operators do not exist in the usual sense. For continuously differentiable basis functions,
the representation of the first-derivative operator is unique, since the integrals that describe
the coefficients of the representation are absolutely convergent. For discontinuous basis
functions, these integrals are only conditionally convergent, thus opening the possibility of
more than one representation consistent within the given basis.

Our approach is based on defining weak representations of the derivative operator. As we
will show below, the nonuniqueness of weak representations is an advantage rather than a
hindrance. In particular, representations that can be viewed as analogs of the forward and
backward differences are consistent with the multiresolution structure of the operator.

We now let T denote the derivative operator. In order to construct the blocks Ak
n, Bk

n, Ck
n ,

and Tk
n of its nonstandard form, defined in (3.8), it is sufficient, due to homogeneity, to

consider Tk
n : Vk

n → Vk
n (the projection Pk

n T Pk
n of T on Vk

n) for some fixed n. All other
block operators Tk

j , and thus Ak
j , Bk

j , and Ck
j , may be obtained by rescaling [4].
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Let us consider functions f ∈ C∞([0, 1]) and Pk
n f , Tk

n f ∈ Vk
n , with expansions

(
Pk

n f
)
(x) =

2n−1∑
m=0

k−1∑
j=0

sn
jm�n

jm(x), (4.1)

(
Tk

n f
)
(x) =

2n−1∑
l=0

k−1∑
i=0

s̃n
il�

n
il(x). (4.2)

Our goal is to find the k × k transition matrices rn
lm , for l, m = 0, . . . , 2n − 1, that satisfy

s̃n
il =

2n−1∑
m=0

k−1∑
j=0

[
rn

lm

]
i j s

n
jm . (4.3)

If the representation of a homogeneous operator were to exist in the ordinary sense, then
the coefficient [rn

lm]i j would necessarily be given by

[
rn

lm

]
i j =

∫ 2−n (l+1)

2−nl
�n

il(x)T�n
jm(x) dx = 2nd [rl−m]i j , (4.4)

where

[rl]i j =
∫ 1

0
�i (x)T� j (x + l) dx (4.5)

is the representation of T on the coarsest scale Vk
0 and d is the degree of homogeneity of

the operator T. For derivative operators, the integral (4.4) does not exist as an absolutely
convergent integral; instead, we present two approaches to compute the transition matrices
rn

lm .
The first approach in Section 4.1 formally demonstrates that the resulting operator is

scale consistent, as prescribed by the degree of homogeneity of the derivative operator. The
matrices are obtained as a solution to a system of linear equations. These equations appear
as we impose requirements that (i) on different scales matrices rn

lm differ only by a factor in
accordance with the degree of homogeneity of the operator, and (ii) the operator be exact
for polynomials on [0, 1] up to degree k − 1. It turns out that the requirements (i) and (ii)
can be satisfied by a two-parameter family of solutions.

The second approach in Section 4.2, is a traditional approach to define a weak derivative,
which provides meaning to the individual terms in the resulting expressions. In this case the
integrals are redefined using integration by parts (a traditional way of dealing with weak
solutions), and we match the resulting parameters with those from the scale-consistent
construction in Section 4.1.

To prepare for these constructions, let us rewrite (4.5) using the derivative operator T = d
dx ,

[rl]i j =
∫ 1

0
�i (x)

d

dx
� j (x + l) dx, (4.6)

which again is a formal expression at this point. Since d
dx is a homogeneous operator of

degree d = 1, the representation on the level n can be found by rescaling:

rn
lm = 2nrl−m . (4.7)
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Also, since d
dx is a local operator, only interactions between neighboring intervals are

involved; that is, rl = 0 for |l| > 1. Therefore, for the interior intervals, we can rewrite (4.3),
using (4.6) and (4.7), as

s̃n
il = 2n

k−1∑
j=0

(
[r1]i j s

n
j,l−1 + [r0]i j s

n
jl + [r−1]i j s

n
j,l+1

)
. (4.8)

Introducing notations for vectors Sn, S̃n , and matrix Rn ,

Sn = 〈
sn

00, . . . , sn
k−1,0, sn

01, . . . , sn
k−1,1, . . . , sn

0,2n−1, . . . , sn
k−1,2n−1

〉T
, (4.9a)

S̃n = 〈
s̃n

00, . . . , s̃n
k−1,0, s̃n

01, . . . , s̃n
k−1,1, . . . , s̃n

0,2n−1, . . . , s̃n
k−1,2n−1

〉T
, (4.9b)

Rn = 2n{rl−m}l,m=0,...,2n−1, (4.9c)

we rewrite (4.8) in the form

S̃n = Rn Sn. (4.10)

The transition matrix Rn has a block tridiagonal structure,

Rn = 2n




r0 r−1

r1
. . .

. . .
. . .

. . . r−1

r1 r0


, (4.11)

with each block rl being a k × k matrix. The matrix blocks r1 and r−1 describe interactions
with the left and the right neighboring intervals, respectively.

4.1. Computation of the Transition Matrix (Approach I)

In this section we compute the transition matrices rl for the Legendre scaling functions by
solving a linear system of equations, which enforces proper scaling, and exact differentiation
for polynomials up to degree k − 1. Using the two-scale difference equation (3.18a) for �i

and � j , let us formally rewrite (4.6) as

[rl]i j = 2
k−1∑

i ′, j ′=0

(
h(0)

i i ′ h(1)
j j ′ [r2l−1]i ′ j ′ +(

h(0)
i i ′ h(0)

j j ′ + h(1)
i i ′ h(1)

j j ′
)
[r2l]i ′ j ′+ h(1)

i i ′ h(0)
j j ′ [r2l+1]i ′ j ′

)
. (4.12)

We will use the linear system (4.12) as a subset of defining equations for rl , l = 0, ±1,
whether the integrals in (4.6) exist or not. Using this linear system ensures that the resulting
operator is homogeneous of degree one, even though the basis functions are discontinuous.

In addition to Eq. (4.12), we require that the transformation (4.3) be exact for polynomials
up to degree p = k − 1. On subspace Vk

n we set

x p =
2n−1∑
l=0

k−1∑
j=0

M(p)
jl �n

jl(x), p = 0, . . . , k − 1, (4.13)
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where coefficients M(p)
jl are the moments of functions �n

jl ,

M(p)
jl =

∫ 1

0
�n

jl(x)x p dx, j = 0, . . . , k − 1. (4.14)

Then the matrices rl are required to satisfy

p M(p−1)
i,0 = 2n

1∑
l = −1

k−1∑
j=0

M(p)
jl [rl]i j , p = 0, . . . , k − 1. (4.15)

It is not difficult to verify that the complete system (4.12), (4.15) contains 3k2 − 2 linearly
independent equations for 3k2 unknowns (some equations are duplicated). As we will
see, these two extra degrees of freedom account for the interaction between neighboring
intervals. By setting a = [r−1]00 and b = − [r1]00, we observe that (4.12) and (4.15) are
satisfied when

[r1]i j = −b(−1)i�i j , (4.16a)

[r0]i j = (−a + b(−1)i+ j + 2
i j )�i j , (4.16b)

[r−1]i j = a(−1) j�i j , (4.16c)

where �i j = √
2i + 1

√
2 j + 1 and the element 
i j , for i, j = 0, . . . , k − 1, is defined as


i j =
{

1, j − i = 1, 3, 5 . . . ,

0, otherwise.
(4.17)

Also matrices r−1 and r1 have rank 1. Combining (4.8) and (4.16), we obtain

s̃n
il = 2n

k−1∑
j=0

�i j
[
a(−1) j sn

j,l+1 − b(−1)i sn
j,l−1 + (−a + b(−1)i+ j + 2
i j )s

n
jl

]
(4.18)

for the interior intervals. If we set parameters a = b = 0, then the blocks r−1 and r1 van-
ish. Therefore, the interaction between intervals occurs only if a, b �= 0. We will show in
Section 4.2 that these parameters can be selected so that the order of the approximation error
in the representation (4.2) is maximized. Also, by appropriately selecting these parameters
we can construct transition matrices at the boundaries, which maintain the order of the
scheme.

Once the matrices rl are computed (in either basis), we can express the matrix elements
[�l]i j , [�l]i j , and [l]i j of the matrices Ak

n, Bk
n, Ck

n in (3.8) on the Vk
0 level in terms of [rl]i j

using (3.18),

[�l]i j = 2
k−1∑

i ′, j ′=0

(
g(0)

i i ′ g(1)
j j ′ [r2l−1]i ′ j ′ + (

g(0)
i i ′ g(0)

j j ′ + g(1)
i i ′ g(1)

j j ′
)
[r2l]i ′ j ′ + g(1)

i i ′ g(0)
j j ′ [r2l+1] j j ′

)
,

[�l]i j = 2
k−1∑

i ′, j ′=0

(
g(0)

i i ′ h(1)
j j ′ [r2l−1]i ′ j ′ + (

g(0)
i i ′ h(0)

j j ′ + g(1)
i i ′ h(1)

j j ′
)
[r2l]i ′ j ′ + g(1)

i i ′ h(0)
j j ′ [r2l+1]i ′ j ′

)
,

[l]i j = 2
k−1∑

i ′, j ′=0

(
h(0)

i i ′ g(1)
j j ′ [r2l−1]i ′ j ′ + (

h(0)
i i ′ g(0)

j j ′ + h(1)
i i ′ g(1)

j j ′
)
[r2l]i ′ j ′ + h(1)

i i ′ g(0)
j j ′ [r2l+1]i ′ j ′

)
.
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The corresponding matrices �n
lm, �n

lm,  n
lm on the nth level can be computed by rescaling,

�n
lm = 2n�l−m, �n

lm = 2n�l−m,  n
lm = 2nl−m . (4.19)

Thus, the nonstandard form of the operator d
dx in the multiwavelet basis is completely

determined by the matrices rl . We have obtained a parametrized family of weak derivative
operators.

4.2. Computation of the Transition Matrix (Approach II)

In this section we use a traditional approach in defining the weak derivative. This approach
amounts to the integration by parts to compute the elements of the transition matrix of the
operator d

dx (for both the Legendre and the interpolating bases). This approach permits us to
establish the meaning of the free parameters a and b in (4.18). We show that for a particular
choice of a and b, the order of approximation is maximized. Let us consider (4.2) for the
derivative operator, where f ∈ C∞([0, 1]) and

s̃n
il =

∫ 2−n (l+1)

2−nl
�n

il(x)
d

dx
f (x) dx (4.20)

are the scaling function coefficients. We define subinterval boundaries x̄l by x̄l = 2−nl for
l = 0, . . . , 2n − 1, and integrate (4.20) by parts,

s̃n
il = f (x)�n

il(x)
∣∣x̄l+1

x̄l
−

∫ x̄l+1

x̄l

f (x)
d

dx
�n

il(x) dx . (4.21)

We now replace f (x) by its expansion with respect to scaling functions, as in (3.6) and
(4.1), and obtain

s̃n
il = 2n/2[ f (x̄l+1)�i (1) − f (x̄l)�i (0)] − 2n

k−1∑
j=0

Ki j s
n
jl , (4.22)

where the integrals

Ki j =
∫ 1

0
� j (x)

d

dx
�i (x) dx (4.23)

are computed in Section 4.2.1 for Legendre scaling functions and in Section 4.2.2 for the
interpolating scaling functions.

Next we express the interior subinterval boundary values f (x̄l) and f (x̄l+1) in terms of
the expansion coefficients sn

jl in (4.1). The exact expressions have the form of infinite sums
of contributions from all scales, which may be stated using Legendre scaling functions � j

of all orders,

f (x̄l+1) = 2n/2
∞∑
j=0

sn
jl � j (1) = 2n/2

∞∑
j=0

sn
j,l+1 � j (0), (4.24)
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and similarly on the boundary x̄l . When approximating f (x̄l+1) by finite sums, an error is
incurred so that from the left,

f (x̄l+1) = 2n/2
k−1∑
j=0

sn
jl � j (1) + 	(1)

kn , (4.25a)

and from the right (l �= 2n − 1),

f (x̄l+1) = 2n/2
k−1∑
j=0

sn
j,l+1 � j (0) + 	(0)

kn . (4.25b)

In the Appendix we derive estimates for the truncation errors, where we separate the leading-
order term,

	(1)
kn = 2−nk�k + O

(
2−n(k+1)

)
, (4.26a)

	(0)
kn = 2−nk(−1)k�k + O

(
2−n(k+1)

)
, (4.26b)

where

�k = k!

(2k)!
f (k)(x̄l+1). (4.26c)

To approximate the interior boundary values (4.25), we use weighted contributions from
both sides of the boundary as

f (x̄l+1) = 2n/2
k−1∑
j=0

[
(1 − a) sn

jl� j (1) + a sn
j,l+1� j (0)

] + (1 − a)	(1)
kn + a	(0)

kn , (4.27)

where 0 ≤ a ≤ 1 is a parameter. Similarly, on the boundary x = x̄l we have

f (x̄l) = 2n/2
k−1∑
j=0

[
(1 − b) sn

jl� j (0) + b sn
j,l−1� j (1)

] + (1 − b)	(0)
kn + b	(1)

kn , (4.28)

where 0 ≤ b ≤ 1 is a parameter. We show in Section 4.2.1 that parameters a and b are
identical to those introduced in (4.16). To approximate the external boundary values, we
may set a = 0 in (4.27) (for the right boundary), and b = 0 in (4.28) (for the left boundary).
Alternatively, in the case of Dirichlet boundary conditions, the exact values of f (x) may be
used at x = 0 and 1 instead. We discuss this further in Section 4.3.

Substituting (4.27) and (4.28) into (4.22), we obtain

s̃n
il = 2n

k−1∑
j=0

{
[(1 − a)�i (1)� j (1) − (1 − b)�i (0)� j (0) − Ki j ]s

n
jl

+ a�i (1)� j (0)sn
j,l+1 − b�i (0)� j (1)sn

j,l−1

} + 	kn, (4.29)

where

	kn = 2−n(k−1/2)�k[�i (1) ((1 − a) + a(−1)k) − �i (0)((1 − b)(−1)k + b)] + O
(
2−n(k+1/2)

)
.

(4.30)
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We can estimate the error of the resulting derivative function f ′(x) by noting that the coeffi-
cients in (4.29) (and the error term in (4.30)) are rescaled on the subspace Vk

n by an additional
factor of 2n/2 (see (3.6)). Since the subinterval length is h = 2−n , the approximation error
is O(hk−1).

This estimate demonstrates the high order of approximation of the method. It is valid
up to and including the boundaries, since boundary conditions are set by selecting specific
values for parameters a and b in [0, 1] (see Section 4.3), and, thus, does not affect the order
of approximation.

Remark 4.1. We note, however, that if k is odd, the leading-order term in (4.30) can
be eliminated by setting a = b = 1

2 , which gives O(hk). The leading-order term is also
eliminated for k = 1 (Haar) when a = 1 and b = 0, or vice versa.

Comparing (4.29) with (4.8), we identify [r1]i j , [r0]i j , and [r−1]i j as

[r1]i j = −b �i (0)� j (1), (4.31a)

[r0]i j = (1 − a)�i (1)� j (1) − (1 − b)�i (0)� j (0) − Ki j , (4.31b)

[r−1]i j = a �i (1)� j (0). (4.31c)

Clearly, the matrices r−1 and r1 have rank 1, as we mentioned before.

4.2.1. Transition matrix in the Legendre basis. We provide explicit expressions for the
parameters in (4.31) for the Legendre basis. Using a relation for the Legendre polynomials
[1],

(2 j + 1)Pj (x) = P ′
j+1(x) − P ′

j−1(x), (4.32)

we obtain for the first derivative

�′
j (x)

2
√

2 j + 1
=

√
2 j − 1� j−1(x) +

√
2 j − 5� j−3(x) + · · · +

{
�0(x), j odd,√

3�1(x), j even.
(4.33)

Substituting (4.33) into (4.23), we find that Ki j satisfies

Ki j = 2�i j �i j , (4.34)

where �i j =
T
i j is defined in (4.17) and �i j = √

2i + 1
√

2 j + 1.
Also,

� j (0) = (−1) j
√

2 j + 1, � j (1) =
√

2 j + 1, (4.35)

which is obtained by differentiating the ordinary differential equation satisfied by the
Legendre polynomials and evaluating results at the boundary points.

Substituting (4.34) and (4.35) into (4.29), we obtain

s̃n
il = 2n

k−1∑
j=0

�i j
[
a (−1) j sn

j,l+1 − b (−1)i sn
j,l−1 + (−a + b(−1)i+ j + 2
i j ) sn

jl

]
. (4.36)

Expressions for the transition matrices in (4.36) and (4.18) are exactly the same.
The matrices r1 and r0 are shown in Table VI for k = 1, 2, and 3, and for a = b = 1/2.

(Using these parameters, r−1 = −r T
1 .)
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TABLE VI

Transition Matrices for the First-Derivative

Operator Using the Legendre Scaling Function[
− 1

2

]
[0]

1

2

[−1 −√
3

√
3 3

] [
0

√
3

−√
3 0

]

1

2


 −1 −√

3 −√
5

√
3 3

√
15

−√
5 −√

15 −5





 0

√
3 0

−√
3 0

√
15

0 −√
15 0




Note. From left to right, r1; r0 shown for k = 1, 2, and 3;
and a = b = 1/2.

4.2.2. Transition matrix in the interpolating basis. For the interpolating basis �i (x)
defined in (3.17), coefficients Ki j in (4.23) reduce to

Ki j = √
w j

d

dx
�i (x j ) (4.37)

and can be evaluated numerically by differentiating the Larange polynomials in (3.17).
Using (3.17) and (4.35) we may evalutate the boundary terms

�i (1) = √
wi

k−1∑
l=0

√
2l + 1Pl(xi ), (4.38a)

�i (0) = √
wi

k−1∑
l=0

(−1)l
√

2l + 1Pl(xi ). (4.38b)

The matrices r1 and r0 are shown in Table VII for k = 1, 2, and 3, and a = b = 1/2. Again
we note that r−1 = − r T

1 for this choice of parameters.
To summarize the results of this section, we note the following. (i) The derivative operator

is defined using the three-block stencil r0, r1, and r−1. Communication with neighboring
intervals is achieved through blocks r1 and r−1 of rank 1, if a, b > 0. (ii) For all choices of a

TABLE VII

Transition Matrices for the First-Derivative Operator Using

the Interpolating Scaling Function[
− 1

2

]
[0]

1

2

[
1 −2 − √

3

−2 + √
3 1

] [
0

√
3

−√
3 0

]

1

4


 −2

√
6 + √

10 −8 − 2
√

15

−√
6 + √

10 −2
√

6 + √
10

−8 + 2
√

15 −√
6 + √

10 −2


 1√

6


 0 7 −√

10

−7 0 7√
10 −7 0




Note. From left to right, r1; r0 shown for k = 1, 2, and 3; and a = b = 1/2.
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and b, the transition matrices scale as 2n , consistent with the two-scale difference equations
and the degree of homogeneity of the operator.

4.3. Multiwavelet Derivative Operators as Analogs of Finite Differences

Derivatives in wavelet bases (such as Daubechies’ wavelets) on a subspace Vk
n may

be viewed as finite difference schemes [4]. The nonstandard forms of these operators
are easy to compute and to apply. The multiresolution representation allows us in this
case (with additional algorithms) to avoid computations with matrices of high condition
number [16].

In the multiwavelet representation of the derivative, the derivative operator on Vk
n is

representated by a block tridiagonal matrix, subject to the choice of parameters a and
b. In order to characterize these choices, let us consider the collection of matrix blocks
{r1, r0, r−1} in (4.31) as a “block stencil,” by analogy with standard finite differences. Using
this stencil, we may specify a variety of operators, including block analogs of central,
forward, and backward differences.

The advantage of the block structure becomes clear if we consider boundary conditions.
In particular, we do not change the order of the approximation by incorporating boundary
conditions (see (4.30)). The difficulty of maintaining order near the boundary has been a
problem in ordinary finite differences. At the root of this problem is the location of the grid
points used in the discretization. Using equally spaced points in high-order approximations
leads to an operator with a high condition number, thus negating their usefulness.

In the multiwavelet case, unequally spaced grid points are selected as roots of orthogo-
nal polynomials, and this maintains high order at the boundary. Also, Dirichlet boundary
conditions may be incorporated directly into the construction. We now consider first- and
second-derivative constructions for periodic and Dirichlet boundary conditions.

4.3.1. Periodic first derivative. Block matrix stencils for the first derivative with peri-
odic boundary conditions are easily obtained from (4.31). The analog of a central difference
operator, for example, is obtained using the values a = b = 1/2 in (4.31) and then construct-
ing the corresponding block tridiagonal matrix, analogous to the usual finite difference
matrix. Table VIII defines several stencils obtainable from (4.31).

4.3.2. First derivative with zero boundary conditions. We now construct an equation
similar to (4.31) for the case of Dirichlet (zero) boundary conditions, i.e., f (0) = f (1) = 0.
For the case f (0) = 0, we set f (x̄l) = 0 in (4.22) and proceed as before to obtain

[
rl

1

]
i j

= 0, (4.39a)

TABLE VIII

Periodic First-Derivative Stencils, Derived from Eq. (4.31)

Operation Stencil a b

Central difference r1, r0, r−1 1/2 1/2
Forward difference r f

0 , r f
−1 1 0

Backward difference rb
1 , rb

0 0 1
“Center” difference r c

0 0 0
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TABLE IX

Dirichlet (Zero) First-Derivative Operators

Operation Stencil Equation a b

Forward difference r f l
0 , r f l

−1 (4.39) 1 0
r f r

0 (4.40) 1 0

Backward difference rbl
0 (4.39) 0 1

rbr
1 , rbr

0 (4.40) 0 1

[
rl

0

]
i j

= (1 − a)�i (1)� j (1) − Ki j , (4.39b)[
rl
−1

]
i j = a �i (1)� j (0). (4.39c)

For the right interval f (1) = 0, we set f (x̄l+1) = 0 and obtain[
rr

1

]
i j

= −b �i (0)� j (1), (4.40a)[
rr

0

]
i j

= −(1 − b)�i (0)� j (0) − Ki j , (4.40b)[
rr
−1

]
i j = 0. (4.40c)

Using (4.39) and (4.40) we define various stencils in Table IX (the superscript notation l
is used to denote the left boundary and r the right). Together with the stencils in Table VIII,
we may construct backward and forward difference matrices

Db =




rbl
0

rb
1 rb

0
· · ·
rb

1 rb
0

rbr
1 rbr

0




, D f =




r f l
0 r f l

−1

r f
0 r f

−1
· · ·

r f
0 r f

−1

r f r
0




, (4.41)

which satisfy the zero Dirichlet condition.

4.3.3. Periodic second derivative. Let us now consider the projection of T = d
dx a(x) d

dx ,
a(x) > 0, onto Vk

n , yielding a discretization of a second-derivative operator with variable
coefficients. Let M denote multiplication by the function a(x), and let D and D̃ be two
(possibly different) discretizations of the first-derivative operator Pk

n
d

dx Pk
n . Then the matrix

representation of d
dx a(x) d

dx is obtained as D AD̃, where A = Pk
n MPk

n . In constructing T , we
would like to obtain a self-adjoint, negative-definite matrix for self-adjoint, negative-definite
problems. This is achieved when D = −D̃T .

Let us define Dc to be the block central difference operator, and D f and Db to be
block forward and backward difference operators with periodic boundary conditions, whose
stencils are defined in Table VIII. We now assert that the second-derivative operators Dc Dc,
D f Db, and Db D f are all self-adjoint, negative definite. We present a simple proof which
shows that Dc = −DT

c , and note that the proof of Db = −DT
f may be obtained in a similar

manner.
If a = b, then

[r1] j i = −b � j (0)�i (1) = −[r−1]i j , (4.42)
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which verifies that the off-diagonal blocks are skew symmetric. Next we simplify K ji ,
defined in (4.23), using integration by parts to obtain

K ji = �i (1)� j (1) − �i (0)� j (0) − Ki j . (4.43)

Substituting (4.43) into

[r0] j i = (1 − a)� j (1)�i (1) − (1 − b)� j (0)�i (0) − K ji , (4.44)

and setting r T
0 = −r0, we find that a and b must satisfy a = b = 1/2.

4.3.4. Second derivative with zero boundary conditions. We wish to construct a self-
adjoint, negative-definite second derivative of the form Db D f , as we did for periodic bound-
ary conditions. We note, however, that when we apply the matrix D f in (4.41) to a function’s
coefficients, the resulting coefficients represent the function’s derivative, which does not
in general satisfy the same boundary conditions as the function itself. Therefore, we do
not use the matrix Db to compute the second derivative. Instead, we construct a backward
difference operator as

DT
f = −




rc
0

rb
1 rb

0
. . .

rb
1 rb

0

rb
1 rb

0




, (4.45)

which is the transpose of a forward difference operator that does not incorporate any bound-
ary conditions. Therefore, we may construct the second-derivative operators −DT

f D f and
−DT

b Db, which are self-adjoint, negative definite.

Remark 4.2. In these constructions of the second-derivative operator, the ends of the
interval [0, 1] are not treated in the same manner (for algebraic reasons), so that matrices
DT

b Db �= DT
f D f . On the other hand, any linear combination of DT

b Db and DT
f D f satisfies

the boundary conditions. We have observed that by choosing D2 = (DT
b Db + DT

f D f )/2,
which forces symmetry between the ends of the interval, we significantly improve the
numerical properties of derivative matrices and their exponentials. As an example, if k = 4
and h = 1/16, the condition number of DT

f D f is ≈1016 (essentially singular), whereas the
condition number of (DT

b Db + DT
f D f )/2 is ≈104.

Remark 4.3. We note that for k = 1 (the Haar basis) the stencil given in Table IX is a
rather poor approximation of the first-derivative operator. Since the Haar basis is only a
piecewise constant representation of the function, the boundary condition f (0) = 0 forces
the function to zero, for example, in the first, or left-most interval. This problem may be
remedied in several ways, such as using a staggered interval representation. Our experiments
with staggered intervals show that although it is useful for low order, there are problems for
higher orders (which so far we have not been able to resolve). For this reason, we do not
pursue this approach here, since the symmetric construction of D2 for higher order schemes
is completely adequate (see Section 5.3).
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5. REPRESENTATION OF THE EXPONENTIAL OPERATORS

IN MULTIWAVELET BASES

We can significantly improve properties of time-evolution schemes for advection–
diffusion equations by using the exponential of operators [7, 8]. As it turns out, for self-
adjoint, strictly elliptic operators L, the exponential exp(−tL) is sparse in wavelet bases
(for a finite but arbitrary precision) for all t ≥ 0. In fact, the exponential of these operators
is usually sparser than any of its polynomial or rational approximations. This is because
the error of such approximations is usually in the region of high spatial frequencies, which
reduces the efficiency of wavelet representations. This observation makes the construction
of exp(−tL) (and other operators necessary for implementation of evolution schemes [7, 8])
feasible in two and three spatial dimensions. We will limit further discussion here to one di-
mension. Although the approach of this paper does not rely on any specific one-dimensional
features, the straightforward generalization of what follows (while possible) is not efficient.
An efficient generalization to multiple dimensions will be given elsewhere. Our goal in
discussing the one-dimensional problem is to demonstrate that using multiwavelet bases,
we can incorporate boundary conditions other than the periodic boundary condition in [7].

We start by two explicit constructions of the exponential operators (in the case of constant
coefficients) for periodic and Dirichlet boundary conditions. We then consider operators with
variable coefficients. The development of the analogs of forward and backward differences
in Section 4.3 makes the task fairly straightforward.

Let us consider the heat equation

∂u

∂t
= ∂2u

∂x2
, x 	 [0, 1], (5.1)

with the initial condition u(x, 0) = u(x) and either the periodic condition

u(x, t) = u(x + 1, t) (5.2)

or the Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = 0. (5.3)

The exact solution at the time t = � is given by

u(x, � ) = e�d2/dx2
u(x, 0), (5.4)

where the boundary conditions are incorporated into the operator. Our objective is to derive
the representation of the exponential operator e�d2/dx2

in the multiwavelet bases.
We first consider the case of constant coefficients and construct a closed-form expression

for the exponential operator by diagonalizing it in the Fourier basis. After considering
both periodic and Dirichlet boundary conditions in Sections 5.1 and 5.2, we then consider
the case of nonconstant coefficients in Section 5.3. In this case, the operators cannot be
diagonalized and so we use the scaling and squaring method. For us it is important to verify
that both approaches produce the same results (in the constant coefficient case) up to some
accuracy, since it provides numerical confirmation of our approach. We do the comparison
in Section 5.3.1.
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5.1. Periodic Boundary Conditions

In the case of periodic boundary conditions the exponential operator e�d2/dx2
is diagonal-

ized in the Fourier basis. Although the derivation in this section uses the Legendre scaling
functions, the results are valid for the interpolating scaling functions as well.

Let us expand u(x, � ) into its Fourier series,

u(x, � ) = e�d2/dx2
u(x) =

∑
�	Z

û�(� )ei2�vx , (5.5)

where the coefficients are given by û�(� ) = e−� (2��)2
û� and û� = ∫ 1

0 u(x)e−i2��x dx . Using
the Legendre expansion on Vk

n ,

u(x) =
2n−1∑
l=0

k−1∑
j=0

sn
jl �n

jl(x), (5.6)

we can express the Fourier coefficients û� as

û� =
2n−1∑
l=0

k−1∑
j=0

sn
jl

∫ 2−n (l+1)

2−nl
�n

jl(x)e−i2��x dx = 2�√
N

2n−1∑
l=0

k−1∑
j=0

sn
jl�̂ j (2��/N )e−i2��l/N ,

(5.7)

where N = 2n .
Next, we expand u(x, � ) in the Legendre basis,

u(x, � ) =
2n−1∑
l ′=0

k−1∑
j ′=0

s̃n
j ′l ′�

n
j ′l ′ (x), (5.8)

and use the Fourier series (5.5) to obtain the Legendre coefficients

s̃n
j ′l ′ =

∑
�	Z

e−� (2��)2
û�

∫ 2−n (l ′+1)

2−nl ′
�n

j ′l ′ (x)ei2��x dx . (5.9)

Using (5.7), we obtain

s̃n
j ′l ′ =

2n−1∑
l=0

k−1∑
j=0

sn
jl

[
�n

l ′−l

]
j ′ j

, (5.10)

where the transition matrix

[
�n

l

]
j ′ j = 1

N

N−1∑
�=0

̃0
j ′ j (2��, � )ei2��l/N , (5.11)

and where

̃0
j ′ j (�, � ) = (2�)2

∑

	Z

e−� (�+2�
N )2
�̂ j ′ (�/N + 2�
) �̂ j (�/N + 2�
). (5.12)



176 ALPERT ET AL.

The functions �̂ j (� ), being the Fourier transform of the discontinuous functions � j (x),
decay only as 1/|� |. Due, however, to the cutoff factor e−� (�+2�
N )2

, the summation over

 in (5.12) converges. The sum over � in (5.11) can be computed using the fast Fourier
transform (FFT). As in [7], we obtain a representation for periodic boundary conditions, in
this case using multiwavelets.

Remark 5.1. The expressions in (5.11) for the exponential operators are on Vk
n sub-

spaces and, therefore, are not sparse. The projection of these operators onto the multiwavelet
bases in nonstandard form, however, admits an effectively sparse representation, as noted
above. A numerical procedure for constructing the nonstandard form in O(N ) operations
[5] involves constructing a banded version of Tn , and then projecting the matrix onto the
wavelet subspaces of coarser scales. At each scale, additional projections onto Vk

j are used
to extend the bandwidth of Tj , j = n, n − 1, . . . , 0. These projections are accomplished
using the quadrature formula (3.31).

5.2. Dirichlet Boundary Conditions

Let us consider the Dirichlet boundary conditions, u(0, t) = u(1, t) = 0. The operator
e�d2/dx2

is diagonalized in the trigonometric basis {√2 sin(��x)}�∈N. The following deriva-
tion holds for both the Legendre and the interpolating bases. Our approach is similar to that
in Section 5.1; specifically, we expand u(x, � ) into the sine series,

u(x, � ) = e� d2

dx2 u(x) =
∑
�>0

û�(� )
√

2 sin(��x), x ∈ [0, 1], (5.13)

and compute coefficients û�(� ) = e−� (��)2
û�, where û� = ∫ 1

0 u(x)
√

2 sin(��x) dx . Using
the polynomial expansion (5.6) for u(x) and the identity sin � = 1

2i (ei� − e−i� ), we find

û� =
2n−1∑
l=0

k−1∑
j=0

sn
jl

i√
2

[
�n

jl(��) − �n
jl(��)

]
, (5.14)

where �n
jl(� ) = ∫ 2−n (l+1)

2−nl �n
jl(x)e−i� x dx = 2�√

N
�̂ j (�/N )e−i�l/N .

We now expand u(x, � ) into the Legendre basis, as in (5.8), compute coefficients s̃n
j ′l ′

using (5.13) and (5.14), and obtain

s̃n
j ′l ′ =

2n−1∑
l=0

k−1∑
j=0

sn
jl

([
�1,n

l ′−l

]
j ′ j

− [
�2,n

l ′+l

]
j ′ j

)
, (5.15)

where the transition matrices are evaluated via

[
�1,n

l

]
j ′ j = 1

N
Re

(
2N∑
�=1

∑

≥0

1
j ′ j (�� + 2�
N , � )ei��l/N

)
, (5.16a)

[
�2,n

l

]
j ′ j = 1

N
Re

(
2N∑
�=1

∑

≥0

2
j ′ j (�� + 2�
N , � )ei��l/N

)
, (5.16b)
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where

1
j ′ j (�, � ) = (2�)2e−��2

�̂ j ′ (�/N ) �̂ j (�/N ),
(5.17)

2
j ′ j (�, � ) = (2�)2e−��2

�̂ j ′ (�/N ) �̂ j (�/N ).

The sums in (5.16) can be computed using the FFT. This result shows that the boundary
conditions do not present a difficulty for multiwavelets. The nonstandard form of the expo-
nential operator is effectively sparse, as mentioned in Remark 5.1, and boundary conditions
are incorporated into the operator.

5.3. Variable Coefficients

In the previous examples, explicit formulas were available to incorporate the boudary
conditions into the exponential operator. Let us show that the same can be accomplished
(in a different manner) for problems with variable coefficients.

Let us consider

∂u

∂t
= ∂u

∂x
a(x)

∂u

∂x
, x ∈ [0, 1], (5.18)

where a(x) > 0, and where boundary conditions are given in either (5.2) or (5.3). Our first
step is to replace the operators in (5.18) by their discrete multiwavelet representations.
Specifically, we project T = d

dx a(x) d
dx onto Vk

n by constructing A = Pk
n M Pk

n , where M is a
multiplication operator by the function a(x), and by constructing the operators D = Pk

n
d

dx Pk
n

and D̃ = Pk
n

d
dx Pk

n , which are (perhaps different) discretizations of the first-derivative oper-
ator, as described in Section 4.3. As noted, these matrices are analogous to the standard
finite difference representations on Pk

n . We thus obtain the projection Tn = D AD̃ and write
(5.18) as

d

dt
un = Tnun, (5.19)

where d
dt un = Pk

nut and un = Pk
nu, and where the appropriate boundary conditions are in-

corporated directly into operators D and D̃, as in Table IX. The explicit solution to (5.19)
at time t = � is

un(� ) = e� Tn un(0). (5.20)

In solving (5.20) we may compute the exponential of the matrix Tn , using the scaling and
squaring method, as follows:

1. Compute the exponent j such that ‖Tn‖2/2 j < 1.

2. Compute the Taylor expansion for T = Tn/2 j ,

eT̃ = 1 + T̃ + T̃ 2

2!
+ T̃

3

3!
+ · · · , (5.21)

where the series is truncated once ‖T̃ k‖/k! < 	1, where 	1 is the error tolerance for the
exponential.

3. Square eT̃ j times to obtain eTn .
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TABLE X

Comparison of Exponential Matrices Computed Using the Fourier Method and the

Scaling and Squaring Method

Number of subintervals

Order (k) 4 8 16 32 64

2 2.1 × 10−1 4.9 × 10−2 1.7 × 10−2 4.5 × 10−3 1.1 × 10−3

4 7.6 × 10−3 3.2 × 10−4 2.2 × 10−5 1.4 × 10−6 9.0 × 10−8

6 1.6 × 10−4 2.2 × 10−6 4.0 × 10−8 6.4 × 10−10 3.6 × 10−11

8 3.7 × 10−6 1.3 × 10−8 1.1 × 10−10 1.1 × 10−11 2.5 × 10−12

Remark 5.2. It is critical to use a wavelet (multiwavelet) representation of Tn in this
algorithm for all matrices to remain sparse. In this algorithm we truncate entries outside a
band, the width of which is determined by the desired accuracy (see [3] and [5] for details).
An attempt to perform this algorithm directly on Tn will result in dense matrices.

Remark 5.3. In Section 6 we compute the truncated exponential operators Q j (�tL)
using a modified scaling and squaring algorithm (see [8] for details).

5.3.1. Comparison of scaling and squaring with Fourier method. For operators with
constant coefficients (where the Fourier method in Section 5.2 is applicable), we obtain
excellent agreement between the Fourier method and the scaling and squaring method for
computing the exponential. For comparison, we compute matrices Z = e�t D2 using the
Fourier method and the scaling and squaring method. In Table X we show the relative
errors ‖Z f − Zs‖/‖Z f ‖, where Z f is the matrix obtained using the Fourier method and
Zs is the matrix obtained using the scaling and squaring method, for various orders k, with
�t = 10−2.

6. NUMERICAL EXAMPLES

In this section we present the results of numerical experiments in which we compute,
using multiwavelet bases, solutions of the heat equation,

ut = ∂x (a(x)∂x u), (6.1)

and Burgers’ equation

ut + uux = �uxx , (6.2)

subject to the Dirichlet boundary conditions

u(0, t) = u(1, t) = 0, (6.3)

where a(x) and � denote diffusion coefficients. We demonstrate that high order is maintained
up to the boundaries for problems involving Dirichlet boundary conditions. The starting
point for our method (see also [7]) is the semigroup approach, which is a well-known
analytical tool used to convert PDEs to nonlinear integral equations and to obtain estimates
associated with the behavior of their solutions.
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By using the semigroup approach, we obtain the solution at each time step as a result
of matrix–vector multiplication and pointwise multiplication of functions. If operators and
functions have a sparse representation (as in the multiwavelet basis), then these operations
may be performed in a fast manner, at a cost proportional to the number of significant
coefficients. We thus obtain an adaptive algorithm.

In the following examples, we construct the discrete, second-derivative operator D2 =
(DT

b Db + DT
f D f )/2 as described in Section 4.3.4. We construct matrix exponentials using

the scaling and squaring method described in Section 5.3.

6.1. The Heat Equation

We begin with this simple linear example in order to illustrate several points and provide
a bridge to the nonlinear problems below. For the heat equation, the nonlinear term N = 0,
the solution (2.10) may be written as

u(x, t) = etLu0(x), (6.4)

where L= ∂x (a(x)∂x ). The solution u(x, t) is computed by discretizing the time interval
[0, 1] into Nt subintervals of length �t = 1/Nt , and by repeatedly computing

U (t j+1) = e�tLU (t j ), (6.5)

for j = 0, 1, 2, . . . , Nt − 1, where U (t0) = U (0) is the discretization of the initial condition
as described in Section 3.3. The numerical method described is explicit and unconditionally
stable, since the eigenvalues of e�tL are less than 1. The operator e�tL remains sparse for any
t > 0, and therefore, we could have computed u(x, t) directly. In this example a relatively
small time step is selected in preparation for the incorporation of the nonlinear term.

EXAMPLE 1. Let us consider (6.1) with a(x) = 1, and the initial condition

u0(x) = sin(�x), (6.6)

on the unit time interval, and choose the time step �t = 10−1. Interpolating scaling functions
of order k = 6 were used on eight equal intervals to discretize the problem. The exponen-
tial operator was computed using the methods described in Section 5.3, with coefficients
truncated at a threshold of 	 = 10−6. In Fig. 1 we show the projection of the solution on Vk

n

for various time steps, and we note that the relative L2 error (computed using 100 equally
speaced points) never exceeded ≈1.6 × 10−7. See a similar behavior of this type of solver
for periodic boundary conditions in [7].

EXAMPLE 2. In Fig. 2 we illustrate our method for the computation of exponentials with
variable coefficients. For a(x) = (1.1 − cos(16�x))/2, we plot the solution u(x, t) at times
t = i/10, i = 0, 1, . . . , 10.

6.2. Burgers’ Equation

Burgers’ equation is an example of a nonlinear PDE incorporating linear diffusion and
nonlinear advection. Solutions of Burgers’ equation develop stationary or moving shocks.
We demonstrate that these solutions may be efficiently represented (have a sparse represen-
tation) at each time step in a multiwavelet basis, due to the vanishing-moments property of
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FIG. 1. The solution in Example 1 for various time steps.

multiwavelets. The cost of the algorithm which we describe is proportional to the number
of nonzero coefficients in this representation. We thus obtain an adaptive method, where
the cost of each new time step is proportional to the number of significant coefficients at
that time step.

FIG. 2. The solution in Example 2 at various time steps.
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We write initial-value problems (including (6.1) and (6.2)) in the form

ut = Lu + N (u), (6.7)

with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1. (6.8)

We explicitly separate the evolution (6.7) into a linear part Lu and a nonlinear part N (u),
where the operators L and N do not depend on time t . The integral equation to solve (6.7)
is given in (2.10).

For Burgers’ equation, N (u) = −uux , and the integral in (2.10) may be approximated
using the quadrature formula (see [8]),

I (t) =
∫ t

t0

e(t−� )LN (u(x, � )) d�

= �t

[
 Nn+1 +

M−1∑
m=0

�m Nn−m

]
, (6.9)

where Nn =N (u(x, tn)),  �= 0, and M + 1 is the order of the method in time. We use
schemes with M = 1 and M = 3. For M = 1,  = Q2, and �0 = Q1 − Q2, where

Q j (x) = ex − E j (x)

x j
, E j (x) =

j−1∑
k=0

xk

k!
. (6.10)

For M=3,  = Q2/3 + Q3 + Q4, �0 = Q1 + Q2/2 − 2Q3 − 3Q4, �1 = −Q2 + Q3 +3Q4,
and �2 = Q2/6 − Q4 (see [8]).

Using (6.9) at each time step we solve

U (ti+1) = Q0U (ti ) − �t

[
U (ti+1)∂xU (ti+1) +

M−1∑
m=0

�mU (ti−m)∂xU (ti−m)

]
, (6.11)

where U (t0) = U (0) is the discretization of the initial condition as described in Section 3.3.
The implicit term U (ti+1) is computed using a simple fixed-point iteration. We start with

U0(ti+1) = Q0U (ti ) − �t

[
U (ti )∂xU (ti ) +

M−1∑
m=0

�mU (ti−m)∂xU (ti−m)

]
(6.12)

and proceed by computing Uk(ti+1) using (6.11) for k = 1, 2, . . . , until

‖Uk+1(ti+1) − Uk(ti+1)‖ < �, (6.13)

where typically we select � = 	/10. Once (6.13) is satisfied, we set U (ti+1) = Uk+1(ti+1).
We point out that fixed-point iteration is sufficient here, due to the stability properties of
ELP schemes (see [8]). In our numerical tests with �x ≈ �t , the number of iterations is
small (roughly five), which represents one of the advantages of ELP schemes. We illustrate
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the accuracy of our approach by comparing the approximate wavelet solution Uw(x, t) at
some time t , with the exact solution Ue(x, t) using the relative L2 error

E(t) = ‖Uw − Ue‖2

‖Uw‖2
, (6.14)

where the exact solution Ue(x, t) is derived by the Cole–Hopf transformation (see, for
example, [23]).

Let us summarize an algorithm for the adaptive computation of Burgers’ equation using
multiwavelets. We provide this description to illustrate the practical implementation of the
adaptive selection of basis functions.

Initialization.

• Construct the derivative operator D as described in Section 4 and compute its nonstan-
dard form as described in Section 3.3. Next, construct the symmetric second-derivative oper-
ator D2 (see Remark 4.2), and the nonstandard forms of exponential operators Q j (�tL), j =
0, 1, . . . , M + 1, using the modified scaling and squaring method (see Section 5.3 and [8]).

• Discretize the initial condition U (t0) = u0(x) on Vk
n and compute its wavelet transform,

truncating coefficients below an accuracy 	, as described in Section 3.3.2.

Evaluation. For each time step ti , do the following:

• Perform the predictor step in (6.11) by computing the derivatives Ux (ti−m) = DU (ti−m)
using matrix–vector multiplication, and by computing the products U (ti−m) · Ux (ti−m) as
described in Section 3.3.3, for m = 0, 1, . . . , M − 1. Then compute U0(ti+1) in (6.12).

• Perform the correction step in a similar manner by computing Uk(ti+1) in (6.11) for
k = 1, 2, . . . , until (6.13) is satisfied. Then set U (ti+1) = Uk+1(ti+1).

The control mechanisms to assure local resolution up to a given accuracy are very simple.

EXAMPLE 3. In this example we compute the solution to Burgers’ equation using the
initial condition in (6.6), with � = 10−2, on the unit time interval. The solution for � = 0.01
is similar to the one shown in Fig. 3 for � = 0.001. We use this example to demonstrate
that for a given order in space and time, the ELP schemes exhibit appropriate behavior.
For multiwavelets of order k, the spatial order of our schemes corresponds to O(h(k−1/2)),
where h = 2−n is the size of the smallest interval used (see Remark 4.1). Accordingly, we
solve Burgers’ equation with various accuracy thresholds 	 = 2−n(k−1/2) and record the finest
scale m necessary to achieve accuracy 	. In Tables XI and XII we show that for a given
value of k, n and m are proportional, which demonstrates that the desired spatial order is
being achieved. Table XI contains tests using second order in space and time, and Table XII
shows tests for higher orders in space, with fourth order in time.

In these tables, Column 1 indicates the spatial order k, and Column 2 has the numerical
value of the accuracy threshold 	 = 2−n(k−1/2) for increasing values of n. The threshold for
the implicit iteration was set at � = 	/10. We estimate the actual accuracy by computing the
L2 error of the solution on 100 points and comparing it with the exact solution in (6.14).
In Column 6 we record the maximum L2 error from times t = i/10, i = 1, 2, . . . , 10. In
Column 3 we record the size of time steps �t . Column 4 contains m, the finest scale used,
and we observe that m increases proportionally with n. Column 5 contains the total number
of coefficients Nc used in the computations, and we observe that Nc is minimized when k
is chosen as k ≈ p, where 10−p is the desired accuracy. This is not a precise relationship,
but it holds approximately for the orders we have shown.
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FIG. 3. The solution in Example 4 for various time steps.

EXAMPLE 4. In this example we compute the solution to Burgers’ equation using the ini-
tial condition (6.6) with � = 10−3, on the unit time interval, where �t = 10−3. The smallest
interval in the discretization was �x = 1/1024 ≈ 10−3, so �x ≈ �t (on the finest scale).
Interpolating scaling functions of order k = 6 were used, and operators were computed us-
ing the methods described in Sections 4 and 5.3, with coefficients truncated at a threshold
of 	 = 10−6. The threshold for the implicit iteration was set at � = 	/10. In Fig. 3 we show
the projection of the solution on Vk

n at various time steps, and Fig. 4 illustrates the error,
while Fig. 5 gives the number of significant coefficients per time step. We note that the
maximum error was 5.1 × 10−6, and that the number of operations needed to update the
solution is proportional to the number of significant coefficients.

EXAMPLE 5. We now compute the solution of Burgers’ equation with the initial condition

u(x) = sin(�x) + 1

2
sin(2�x) (6.15)

and � = 10−3, on the unit time interval, where �t = 10−4. The solution to this equation

TABLE XI

Results for Example 3 with Accuracy Threshold � = 2−n(k−1/2), for n = 4, 5, 6,

and 7, with k = 2, and Using a Second-Order Scheme in Time

k 	 �t m Nc L2 error

2 1.6 × 10−2 10−2 6 28 2.9 × 10−2

5.5 × 10−3 10−2 6 28 1.1 × 10−2

2.0 × 10−3 10−2 7 40 6.1 × 10−3

6.9 × 10−4 10−2 8 64 2.3 × 10−3
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TABLE XII

Results for Example 3 with Accuracy Threshold � = 2−n(k−1/2), for n = 1, 2, 3, and 4,

for Various Values of k, and Using a Fourth-Order Scheme in Time

k 	 �t m Nc L2 error

4 8.8 × 10−2 Ua

7.8 × 10−3 10−2 4 40 9.0 × 10−3

6.9 × 10−4 10−2 6 56 6.8 × 10−4

6.1 × 10−5 10−2 7 72 1.5 × 10−4

6 2.2 × 10−2 10−2 2 36 1.7 × 10−2

4.9 × 10−4 10−2 5 72 5.4 × 10−4

1.1 × 10−5 10−2 6 84 1.5 × 10−5

2.4 × 10−7 10−3 7 144 6.2 × 10−7

8 5.5 × 10−3 10−2 2 48 6.4 × 10−3

3.1 × 10−5 10−2 5 96 4.9 × 10−5

1.7 × 10−7 10−3 6 112 2.5 × 10−7

9.3 × 10−10 10−3 7 224 1.8 × 10−9

10 1.4 × 10−3 10−2 3 80 3.3 × 10−3

1.9 × 10−6 10−2 5 120 2.6 × 10−6

2.6 × 10−9 10−3 6 140 3.4 × 10−9

3.6 × 10−12 10−4 7 300 8.9 × 10−11b

12 3.5 × 10−4 10−2 3 96 3.7 × 10−4

1.2 × 10−8 10−3 5 144 8.0 × 10−8

4.1 × 10−11 10−3 6 192 1.3 × 10−10

a Unstable due to large 	.
b Accuracy beyond ≈10−10 cannot be obtained using double-precision arithmetic since the com-

putation involves matrices with a condition number as large as 105.

FIG. 4. The error in Example 4 for various time steps.
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FIG. 5. The number of significant coefficients per time step for Example 4.

develops a right-moving shock. Interpolating scaling functions of order k = 6 were used, and
operators were computed using the methods described in Sections 4 and 5.3. Coefficients
were turncated at a threshold of 	 = 10−6, and the implicit threshold was � = 	/10. Figure 6
shows the projection of the solution on Vk

n at various time steps, Fig. 7 illustrates the error,

FIG. 6. The solution in Example 5 for various time steps.
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FIG. 7. The error in Example 5 for various time steps.

and Fig. 8 shows the number of significant coefficients per time step. The maximum error
was 3.0 × 10−6.

EXAMPLE 6. In this example we recompute Example 4 with � = 10−4 and �t = 10−4.
The results of this example were similar to those in Example 4 and therefore we do not

FIG. 8. The number of significant coefficients per time step for Example 5.
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include pictures. In this case, the maximum error was 2.5 × 10−6, and the maximum number
of coefficients was 180.

7. CONCLUSIONS

We have demonstrated the feasibility of adaptive multiresolution solvers which are con-
structed using the approach described in this paper. Solving PDEs of the advection–diffusion
type (e.g., Navier–Stokes) may be viewed as an act of engineering where various require-
ments must be balanced. The construction described in this paper achieves a very good
balance for treating the integral, differential, nonlinear, and time-stepping aspects of the
problem. The results of this paper should be viewed as feasibility study for adaptive solvers.
Currently, work is under way to develop such solvers in multiple dimensions.

APPENDIX

In this section we derive the estimate (4.26) for the truncation error in (4.25). To sim-
plify the notation, we demonstrate the derivation for the case n = 0 (the coarsest de-
composition level). The general result for n > 0 can be obtained by rescaling the final
expression.

Consider a C∞ function f (x) on the interval x ∈ [0, 2] and expand it into infinite
Legendre series,

f (x) =
∞∑
j=0

s j,0� j (x) +
∞∑
j=0

s j,1� j (x − 1), (A.1)

where the first and the second terms represent the parts of the function localized on the
intervals [0, 1] and [1, 2], respectively. The coefficients s j,0 and s j,1 are given by

s j,0 =
∫ 1

0
f (x)� j (x) dx, (A.2a)

s j,1 =
∫ 2

1
f (x)� j (x − 1) dx . (A.2b)

LEMMA A.1. The truncation errors in finite sums

f (1) =
k−1∑
j=0

s j,0

√
2 j + 1 + 	(1)

k , (A.3a)

f (1) =
k−1∑
j=0

s j,1(−1) j
√

2 j + 1 + 	(0)
k (A.3b)

have the form

	(1)
k = �k +

∞∑
p=k+1

f (p)(1)
(−1)p+k(2k + 1)p!

(p − k)!(p + k + 1)!
, (A.4a)
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	(0)
k = (−1)k�k +

∞∑
p=k+1

f (p)(1)
(2k + 1)p!

(p − k)!(p + k + 1)!
, (A.4b)

where

�k = k!

(2k)!
f (k)(1). (A.4c)

Let us compute the moments of functions � j (x) for all j ,

∫ 1

0
� j (x)x p dx =

√
2 j + 1(p!)2

(p − j)!(p + j + 1)!
, p ≥ j, (A.5a)

∫ 1

0
� j (x)(x − 1)p dx =

√
2 j + 1(p!)2(−1) j+p

(p − j)!(p + j + 1)!
, p ≥ j. (A.5b)

For p < j the moments of � are zero, due to orthogonality. Using (3.16) we have

∫ 1

0
� j (x)(x − 1)p dx =

√
2 j + 1

∫ 1

0
Pj (2x − 1)(x − 1)p dx

= 2−(p+1)
√

2 j + 1
∫ 1

−1
Pj (x)(x − 1)p dx . (A.6)

Using Rodrigues’ formula for Pj ,

Pj (x) = 1

(−1) j 2 j j!

d j

dx j
{(1 − x2) j }, (A.7)

we have, integrating by parts j times,

∫ 1

−1
Pj (x)(x − 1)p dx = −1 j

(−1) j 2 j j!

p!

(p − j)!

∫ 1

−1
(x − 1)p− j (1 − x2) j dx . (A.8)

The boundary terms vanish since they have the form

(−1)r p(p − 1) · · · (p − r )(x − 1)p−r dr

dxr
{(1 − x2) j }|1−1, j < r < p. (A.9)

The integral in (A.8) can be further transformed,∫ 1

−1
(x − 1)p− j (1 − x2) j dx = (−1)p+ j

∫ 1

−1
(1 − x)p(1 + x) j dx . (A.10)

By changing variables, we get

∫ 1

−1
(1 − x)p(1 + x) j dx = 2p+ j+1

∫ 1

0
(1 − x) j x p dx = 2p+ j+1 B(p + 1, j + 1), (A.11)

where B(p + 1, j + 1) is the beta function [1],

B(p + 1, j + 1) = p! j!

(p + j + 1)!
. (A.12)

Combining (A.6)–(A.12), we obtain (A.5b). The derivation of (A.5a) is similar.
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We now turn to Lemma A.1. We start by considering the Taylor expansion of f (x) around
the boundary point x = 1,

f (x) =
∞∑

p=0

f (p)(1)

p!
(x − 1)p. (A.13)

We substitute (A.13) into (A.2) and use (A.5) to obtain

sn
j,0√

2 j + 1
=

∞∑
p= j

f (p)(1)
(−1)p+ j p!

(p − j)!(p + j + 1)!
, (A.14a)

sn
j,1√

2 j + 1
=

∞∑
p= j

f (p)(1)
p!

(p − j)!(p + j + 1)!
. (A.14b)

Next, we multiply both sides of (A.14a) by (2 j + 1) and sum over j ,

∞∑
j=0

s0
j,1

√
2 j + 1 =

∞∑
j=0

∞∑
p= j

�pj , (A.15)

where

�pj = f (p)(1)
(−1) j+p p!(2 j + 1)

(p − j)!(p + j + 1)!
. (A.16)

Since according to (4.24),
∑∞

j=0 s0
j,1

√
2 j + 1 = f (1), we have

f (1) =
∞∑
j=0

∞∑
p= j

�pj =
k−1∑
j=0

∞∑
p= j

�pj +
∞∑
j=k

∞∑
p= j

�pj . (A.17)

Denoting the second sum in (A.17) as 	(1)
k we write (A.17) as

f (1) =
k−1∑
j=0

∞∑
p= j

�pj + 	(1)
k . (A.18)

Rearranging the sum in (A.18) we obtain

k−1∑
j=0

∞∑
p= j

�pj = �0,0 +
k−1∑
p=1

p∑
j=0

�pj +
∞∑

p=k

k∑
j=0

�pj −
∞∑

p=k

�pk, (A.19)

where �0,0 = f (1) according to (A.16). The second and the third terms in (A.19) vanish,
due to the identity

p∑
j=0

(−1) j+p(2 j + 1)

(p − j)!(p + j + 1)!
≡ 0, p > 0, (A.20)

which follows by direct evaluation. Combining (A.18)–(A.20) we obtain the desired estimate
in (A.4a). A similar approach leads to (A.4b).

The same computation on Vk
n leads to a rescaling of operators by the factor 2−np, since

the first derivative is homogeneous of order 1.
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